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ABSTRACT

ZCELe integro-differential equation describing the diffusion
of neutrons in & multiplying medium is studied under the assumption
of plane geometry and linearly anisotropic scattering, but without
the uswal limitation to continuous slowing down énd weak absorption.
Under the condition that the integrated flux vanish at the boundery,
it is shown that a Separable solution exists. The relation between
core size and the number of neutrons required per fission for a
steady state is determined. The results are specialized to the
case of isotropic scattering in the laboratory system, and to the
case of a medium containing hydrogen and an element which scatters

) /|

without energy loss. ('{L,},iffg, e 6LAQ,QZTTAiiX /
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I. INTRODUCTION

In designing a nuclear reactor, one of the major considerations
is the amount of fissionable material required to sustain a chain re-
action. If neutrons are moderated by elements of intermediate atomic
weight for which inelastic scattering is negligible, and if little ab-
sorption is present, the problem can be treated by age - diffusion
theory. Two cases of intereét, however, do not fall under this formal-
ism: these are moderation by a heavy element, where energy losses are
caused primarily by inelastic scattering, and moderation by hydrogen,
in which cross-sections change radically in a single collision interval.

The purpose of this report is to study these two cases in terms
of the integro-differential equation underlying diffusion theory. The
discussion will be limited by the following assumptions: First, the
reactor has plane symmetry, so that the neutron distribution depends
only upon a single space coordinate. Second, the probability that a
neutron will be scattered through a given angle can be represented by
a constant plus a term proportional to the cosine of the angle. Finally,

the neutron density at the boundaries is zero for all energies.
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II. ASYMPTOTIC SOLUTION OF THE BOLTZMANN EQUATION

We assume the reactor consists of a slab bounded by vacuum, ex-
tending along the x-axis from -z to +a and indefinitely in the y-z plane.
Jts time - independent state is then described by the function N(x,vap)
dx dv Qp, defined as the number of neutrons in a volume element with
unit cross-section and thickness dx, having scalar velocities between v
and v + dv, and with velocity vectors making an angle with the positive
x-axis whose cosine lies between‘p andvy,+ qF. It is slightly more con-

venient, however, to take as a distribution function
F oLV My = N &RV, () v

Two quantities needed later can be defined in terms of F; these are the

flux ' \

} = dM B o(r, v M)

Fe (% V¥) = j M

i -\ (2.1)
and the current |

F, V) = ff%/“ Fotym) (2.2)

The form of the continuity equation we shall use requires that the
differential scattering cross-section be linear in the scattering angle.
The differential scattering cross-section.o%(v3v”,Po) dv %Po is defined
as the macroscopic cross-section for scattering from the scalar velocity
v into the interval from v to v + dv, through an angle (measured in

the laboratory system of coordinates) whose cosine lies betweenwpo and
}%)+-qpo. In general U;(v,v',Fb) can be expanded in an infinite series
of Legendre polynominals ix1}%r We will make the assﬁmption thét only

the first two terms are differsnt from zero, and write
. 3 o ’
O TS IS PN B T e tv) phe]

Using the orthogoality of the Legendre polynominals, and integrating

this expression with respect to‘pb, it follows immediately that
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and is the cross-section for scattering from v to a unit interval

about v through any angle, while
[}
— LA gs v pod
(v) = ==
SN VX TATVS
-1

and isthe average cosine of the angle through which a neutron is

scattered in a single collision.
Under the assumption that neutron-neutron interactions are negli-
gible the distribution function F(x,vap) satisfies the following

equation of continuity due to Boltzmann: v
-}

|
SF (K V) som Fovpy =10 Xw j‘av'o:f(v')f"/" Fvip)
2X ° ~
v ) ' Vo \ (2.3)
+ '3. ,(V;V‘WS SO% If}"" b “'V’/W) * %ﬁfvdv'ﬁow')cs("'v‘) '(’d‘;MW‘F(x,\/,'/,f')

where o~ (v) and c}(v) are the macroscopic total and fission cross-
sections respectively for neutrons of velocity v; X(v)dv is the
fraction of fission neutrons born with velocities between v and
v+ dv, v, is some finite velocity above which no fission neutrons
are born, and #is the number of neutrons produced per fission.
It is assumed that bothz’and ) are independent of the energy of the
neutrons causing fission, and that the angular distribution of
fission neutrons is isotropic in the laboratory system.

A detailed derivation of equation (2.3) is given by Weinbergl

whose notation is largely followed here. The two terms on the left

;A. M. Weinberg, Pile Neutron Physics, M-3336, equation 1-28.




2
represent the loss of neutrons from a unit volume due to leakage
through the boundaries and to absorption and scattering within it.
The first term on the right corresponds to neutrons produced by
fission and the second to neutrons produced by scattering down from
a higher energy. The last term represents a distortion in the angu-
lar distribution of these scattered neutrons due to the anisotropic
scattering in the laboratory system; if‘po = 0, this term is absent.

The cross-sections o, c; and Og» through which the dependence
of F on the material properties of the reactor enters, have been
written as dependent only on velocity. However, spatial dependence

can be taken into account provided it is of the form

TMEY) = PXK) T W
where o= (x,v) refers to any of the cross-sections and p(x) is some

fixed function of X. If the new coordinatee

X
X'(x) = jP(E)dE
[+
is introduced, together with the function
Fl(X'(x)lvl/‘-) = F (X,v, n)

p(x) can be cancelled, giving an equation in F’ formally identical
with (2.3). It is therefore sufficient to consider (2.3) as it

stands.

2

This transformation is a special case of the optical distance
used by B. Davison, Transport Theory of Neutrons, LT-18, Chalk
River, Ontario, National Research Council of Canada, January 1947,
p. 10.
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The problem we consider is the following: knowing the values
of the cross-sections and of ¥ for a particular composition, we re~
quire the critical size of the reactor, that is, the size for which
a steady state will be maintained. Physical considerations indicate
that a solution does not always exist, since enpugh parasitic ab-
sorption may be present to preVent a self-sustaining chain reaction
under any conditions. It is therefore more convenient to consider
the size as given, and to determine the value of ¥ required for
criticality. We accordingly take the boundaries at x = t a as
given and look for a solution of (2.3) for F(x,v,m) together with

the corresponding value of ¥, subject to the conditions

Fx,vopm) B F (=X, V, ) ~(2.1)
, (x,v) >0 for -d<x<a

F (2.5)
Fotav) B F,(-a,v) = 0 fov all v (2.6)

The first condition is due to the symmetry about x = 0, and
the second follows from the physical requirement of a positive neu-
tron density within the reactor. The last condition is only an
approximation to the physical system and is introduced (as is usually
done when considering energy dependence) to simplify the prdblem.

The proper boundary conditions for & reactor bounded by vacuum are

F(d,v,/u) = o fov -lem <0
F (-a.vpm) o for o<cpm<d,

corresponding to no incoming neutrons. Under these conditions, the
space distribution of the flux has been determined for the case of
monoenergetic neutrons (ref. 3), and is found to approach asymptoti-

cally the distribution obtained using the approximate condition (2.6),
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the difference between the two distributions decreasing away from
the boundary like an exponentisl with a relaxation length of a
mean free path. It seems reasonable to expect a similar behavier
for the energy dependent case; the error in critical size caused
by using the approximate boundary condition should then be small
if the reactor thickness is large compared to a mean free path,
as it usually is.

In the remsinder of this section we will show, following a
procedure used by Weinberg3 for the case of monoenergetic neutrons,
that solutions of the energy dependent Boltzmann equation exist
having a sinusoidal dependence on x. Since the equation is linear,

it is convenient to work with the complex function

KX . :
F X,V pm) = € f (Vipmr) ' (2.7)

whose real and imaginary parts will both satisfy (2.3) if F itself
does. We make the tentative assumption that a solution of the form
(2.7) exists and try to determine the function ‘f(vdn) and the para-
meter K. Substituting this in place of F in (2.3) and cancelling the

exponential leads to N)

° ]
(o rinp) fuupr = g DA [ AVITE D[ g flvrm)
' (2.8)

Vo \ Vo - ) J
+ 4 fav'o-s (viv) L?M'Juv'./«') + %/AJVAV'/A.,(V') Tev,v') f_f/"/“'a(“’&“')

2 0y

Using the follcwing abbreviations,

)
4,00 f_f‘/‘ F i

w

(2.9)

3 Weinberg, op. cit., p. 33 - 38.
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|
= . | ¢ v, )
S TR N ¢ j_n/“/“ JC - (2.10)
v, Vo
\ X )f ;v'G}(v') -g wH + ~J‘d‘v'c‘s(v v')g( "
=z v A o ' °
ML ° v (2.11)
Vo f
= 3 S‘dv'ﬁotv') Tevivh) § (v
L) v (2.12)
equation (2.8) can be written
(v) — L mty)
§ vy = g R L Y - (2.13)

TW) +i Kpe
Substituting this expression for f(v,m) in (2.9) and (2.10) and

using the integrals

! A tan ot _
S_| H.LQL/A = 2 oL = 2p
fl_(‘:_i/::— . 2 _ ‘tm“o() 2 1-p (2.1%)
Vo jok (' = TT T
M 2 Ho -
.( Teiapm  — <‘ ™ ) = 2 ‘04(2
vhere ot = K orand B = ta'ot /o, we have
-4 _a=p
Loy =g (oo = ™) (2.15)
- -0
ﬁ )y = E‘: ( ‘u mo+ oLt M) (2.16)

it being understood that m, n,X, P and o are velocity dependent

and that tan~'o is restricted to its principal value. When these

expressions for ,fo and 3‘, are substituted in (2.11) and (2.12), the

following simultaneous integral equations for m and n are obtained:
Ve Vs

)
ty) = jdv’K tevy amiv) jow K@w,vd mevy  (2.17)
v v



Ve

miv) = 3(\') - fdv
where K v, vi)
K(Z)(VIV/)

VX(v)j

QX(V)

5;(v)

=]

L}

Vo

@)
K (v,v')nM(V') + jdV'K(v,v')mtv')

v

A,y (vy = Wi g v wv)
- VY e
= gy LoLUR gE vy

o (v!) G (V')

/- pWVD g (v, v)

™ (V') a (vl

pevy Ts tvivh
T o)

Vo

(2.18)

dvi G v ” [ e mony + L2200 qqv)

g v)

¢ being an undetermined constant.

o/ (v}

(2.19)

In order to show that (2.17) and (2.18) actually define the

functions n and m, we require the following theorem:

The integral equation

miv) = }(V) +

Ve
f dv’ K (v, vy m(v!)
v

(2.20)

where |K(v,v')| < M for all v, v', has exactly one solution which is

finite everywhere. This solution is given by

mv) = g (v)

where

Nv,v!)

Vo

+ | av’ N(v,v) g (v')
Jyr e g

= Z KM(V'V')
m={

(2.21)

is the Neumann series in the iterated kernels, the latter being de-

llrV. Volterra, Lecons sur les Equations Integrales, Paris, Gaut.hler -

Villars, 1913, p. 50 -

52.

)]




fined by
K, (viv!) = K (viv')

V’

K (v = jawk(v,v") K, (viv?) (2.22)

me+i v

The solution of (2.17) and (2.18) can now be obtained by
a procedure similar to that used for simultaneous algebraic

equations. Using the theorem Jjust proved and considering n(v)

as given, equation (2.17) can be solved for m(v) in terms of

Ve c2)
L(v) = '(AV’ K tvv!) miv?)
it v

Va

Vo (2.23)
+ jdV'Nm(v.V‘) jo‘,"" KB ) miv?)
v v

wher~ N(t) (vyv’) is the Neumann series corresponding to K(i)(V,V')
Substituting this expression for m(v) in (2.18) yields

an equation of the form

Vo

= gv) + foL"' K(viv') mv)
mwv) ¢ v (2.24)

containing n(v) only, where g(v) is the quantity defined by (2.19)

and v’ )
K (V,V') = K (4)(\/, V’) - J‘Av” K(s)(v, V") Ka (v“' V')
v
v’ ) v’
- jd\/" K (VIV“) fa(,vm N"’(V"' v m) K (I')(VII/’ Vl)
V vl'

(2.25)




Equation (2.24) has the solution

A v,
miy = g+ fv N, V) g (v) (2.26)

where N(v,¥) is the Neumann series in the kernel (2.25) and m(v)
can now be found from (2.23). That m(v) and n(v) as defined by
(2.23) and (2.26) are a solution of the system (2.17) and (2.18)
is evident since all operations used in deriving (2.23) and (2.26)
are reversible. The pair of functions m(v) and n(v) determined by
(2.17) and (2.18) are unique for a given g(v) since a different
pair would lead to the same equations (2.23) and (2.26).

In order to determine ¥, the values of n{v) and m(v) so

obtained are substituted in the egquation

Ve
0z (v) m(v) + lig—) =
2 Ldv zs Ao 5 MLV)] c (2.27)

which defines ¢ (cf. (2.19)). It is clear from the form of (2.23)
and (2.26) that n(v) and m(v) will both contain ¢ as a factor; it
can therefore be cancelled from (2.27) leaving an equation in which
all quantities are known except ¥ . The presence of the arbitrary
constant ¢ is caused by not specifying the absolute value of the
flux, and corresponds to the fact that a critical reactor will
maintaig a steady state at any power level. Since the value of ¢
has no effect on the functional form of m(v) and n(v) or the value
of ¥, it will be taken as unity, so that m and n are both real.

The complex solution of the Boltzmann equation can now be

written, using (2.7) and (2.13), as
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vy = L ) =it VKX
F OV Z 300 T Lo mm
_ (M- XMt ) Cro KX & ALK M) B KX
T ac L+ * >
{2.28)

4"L(m‘*ﬂ%m)MMKx—ﬁmuM+MQ04K¥
. 2_0' . \-\-OL"/-/"'

That this function, with m(v) and n(v) defined by the integral

equations (2.17) and (2.18), is a solution, can be seen by sub-
stituting it in place of F in (2.3). On cancelling the ex-
ponential etxx and equating coefficients of like powers of m,
ﬁhe identities (2.11) and (2.12) result. Both the real and
imaginary parts of F are solutions of (2.3); however, only the
real part satisfies the symmetry condition (2.4). Using the de-

. finitions (2.1), (2.2), (2.9) and (2710), the integrals (2.1k)

and retaining only the real parts,
- 1 - X
F X, v, M) (M -*mrton) CooKX + M (otrn + M ) pAn ]
207 (1epms) (2.29)

n

F,(xwvy =< (Am - ’_;_/im)cm kX = fo®) cookX  (2.30)

(5L ma LL s ) om kX =f‘(v)Mw{x (2.31)
u\

qi-

£, (X:V)

Conditions (2.5) and (2.6) can be met by choosing.

X
1!
8=

(2.32)

thereby determining K in terms of the reactor dimensions.

Most of the previously defined quantities can now be
interpreted. From (2.30) and (2.31), f, and §, are the energy
dependent factors of the flux and current respectively. From
(2.8), n(v)dv is, neglecting the space factor, the number of
neutrons entering the velocity interval dv in unit time by being
born there as fission neutrons or scattering into the interval

from a higher velocity. Since a steady state exists, it is also
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the rate at which neutrons are lost by absorption, scattering and
leaksge. Comparing (2.12) with (2.3), it can be seen that m(v)

is essentially the distortion term due to anisotropic sca.tteriné;
its effect ((2.25) and (2.26)) is to decrease the flux and increase
the outward current. The quantity g(v) (2.19) is the fission source
term. Finally, ® = K/ 0 is, using (2.32) and neglecting the factor
:t/2, the ratio of the total mean free_path to the half-width of the
reactor, a quantity assumed to be small.

In satisfying the condition that the flux vanish on the
boundary, it would be sufficient to take the parameter k equal to
any odd multiple of 1:/26., so that the solution does not appear to
be determined completely. For the case of isotropic scattering in
the laboratory system, however, we shall show that only (2.32)
leads to a solutior‘l of the problem. By properly choosing thé conm-
plex functions ;fu()v,}x), any solution of (2.3), (2.4), (2.5) and

(2.6) can be written as the real part of

s, G) CK;
Fxvipy= 2 Flupy € 3 (2.33)
.j’o
where Kﬂ' = -E (g'-k-‘i) (2.34)
LKa'x

Substituting (2.33) in (2.3) and equating coefficients of €
leads to an equation of the form of (2.8) for each f(é) . We
suppose F ("'V'/‘*) is a perticular solution of the problem with #
the corresponding number of neutrons per fission required for

criticality, and consider any two distinct modes, say §'and :}”.
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Following the previous procedure with}l‘c = 0 leads to the
equations, corresponding to (2.18) and (2.32),
'A ,
miev) = X + S Av! K (v, v ml(vr)
v
v a- Lv)'
PR O TU S
» - o a(v) ? (2.35)
Yo M
vy = Xlv) ¢ f av! K (vV'Y  mi(vt)
v
v (2.36)
v ° f‘*" FY vy mrw)
° g W)
where 5 N
k') = pteny BELL kM) = gy TOVD
a(v!) a(vt)

) "
The constants c and ¢ have both been taken as unity since only

2 is of interest. Suppose K' >K' . Then o' = K'/0 > .
'tal'l-'d-"
u“

)
accordingly less than the one in K (Vi\V') and since

"
and B" = <4 B' for all v. The Neumann series in K (v,v") is

VQ
vy = XW) "’fdv'N'(VcV') A v

v

Vo i
mrv) = X 4 ‘{,w' N"tvv) X

v

by (2.2I), it follows that n"(v)< n' (v) for all v.

From (2.35) and (2.36),

* g /
/ v 922 [ﬁ'(V) m'v) " m"(v)] =5 - .’4) >0
[ g ()

In view of this contradiction, the initial assumption that
the solution contained more than one mode cannot be true; if
several solutions of the problem exist, they each consist of

only a single mode. But the only such solution which is never




19

negative in the reactor is the fundamental (j=o0in (2.3“)), which

therefore constitutes the unique solution of the problem.




ITI. TISOTROPIC SCATTERING

In this section some of the previous results will be
specialized to the case in which scattering is isotropic in the
laboratory system, and will apply approximately to a reactor
consisting of heavy elements where moderation is due almost en-
tirely to inelastic scattering.

Since P, and hence m(v) are zero, the flux and current are

given by A .
ooy = o am kX = G M
(3.1)
. | - RWw) y
;! = = mAV) A KX
F (x,v) = f,wv) dm KX A ™) (3.2)
where u(v) is the solution of the single equation
Ve
: v’ (v')w
mwy) = Xw) ¥ . (3 w9 m (v') (3.3)
and # is then determined from
A\
ﬂfaLV GW pevy mv) = | (3-4)
R a(v)

corresponding to equations (2.30), (2.31), (2.18) and (2.27)
respectively.

Tt is convenient to introduce the following notation:
The probability that a neutron which has left velocity v by
any meens (scattering, leakage or absorption) will be scattered
to a velocity between v and v + dv, will be designated by
a(v, v’) dv. Since this is the ratio of the rate at which neu-

trons leave v by scattering into the interval dv, to the rate

at which they leave by any means,




Os (v, V') iL(V')C¢°'<K Og (v, V")
alv,v!) = = BOY————— (3.5)
MV oo KX > T(vh)

The last equality follows from (3.1), which can be written

.0
m

Similarly, f(v) is defined as the probability that a neutron
which has left velocity v has 'done so by causing fission, and

is given by

oz W) folv) cm kX _ daz v)
v) = = w)
f mev) Cro KX > g ) (3.6)

Using these definitions, (3.3) and (3.4) can be written
Yo

miv) = 'X v) + Jdv’a(v,v') m (v!) (3.7)
v
Ve
Y [avfon) mo) = (3.8)

(4

The Neumann series solution of (3.7) can be written

[~
miv) = Z Mé tv) (3.9)
;’:0
provided
myv) = X (v)
v
= | dv’ ' (v
/YI}A+' ) f a-(V,V) MI ( ) (3.10)
Ar
as can be seen by comparing (3.9) and (3.10) with (2.21) and (2.22).
From (3.10) the quantity n j(v) dv can be interpreted as the number

of neutrons entering the interval dv which have been scattered

times since birth as fission neutrons. It is evident that this




method of solution is not well suited to numerical computation
unless such heavy absorption or leakage is present that a neu~
tron makes only a few collisions before being lost from the re-
actor. An alternative is to start with a function more nearly
representing the final distribution than the fission spectrum
and proceed by iteration. However, t?e kernel dces not have a
simple form and the integrations must be carried out numerically.
It is therefore desirable to replace (3.7) by a set of simulta-
neous algebraic equations which, because of their forms, can be
solved immediately. If the veiocity range is divided into N
intervals numbered in order of decreasing velocity, (3.7) and

(3.8) can be written

L=
my =Xy T 2 QY my (3.11)
P H)
N
v S 4, mi =) (3.12)

i =

th

where n: is the number of neutrons leaving the i interval in

1

unit time, { i is the probability that a neutron leaving the ith

interval has done so by causing a fission,
X; is the fraction of fission neutrons born in the itP

interval, and

34 j is the probability that a neutron leaving interval J
has been scattered to interval i. Since a neutron which has been
scattered into the same interval is considered not to have left
that interval, a;; = O and the upper limit on the summation in

(3.11) is i-1. The n;'s can be found recursively, starting with

the highest veloclity:




M’ = XI
A, T ’Xi + a‘zl my (3-13)

ma = X+ Gz My + Rz Ma

after which¥ is found from (3.12)
Instead of using the continuity equation (3.7), one can

work with the following adjoint equation:
v

pey = F + f’tv'“("ﬁ")o"“') (3.14)

o
which defines the function p(v) in terms of the known quantities
Zﬁ (v) and a(v/,v). In order to find a condition similar to (3.8)
which will determine # in terms of p(v), multiply (3.7) by p(v)

and (3.14%) by n(v) and integrate with respect to v from o to y:

VO Vo VQ fVO
AVPW) mv) = 'ffW po) X + fvw P‘V)jdv'uv,v')mtv')
4]

o ° v
v Ve Ve v

[ av o monr = J,w;m mevy + fowmm JM'MVN‘) p Vi)
® [} ] [

The two double integrals are equal, as can be seen by reversing
the order of integfation in either one and interchanging v and
v!. Subtracting one equation from the other, and making use of

(3.8), we have

v J,lv pwy Xoy =1
o (3.15)

as the required condition.

One can therefore interpret p(v) as the probability,
averaged over the reactor, that a neutron with velocity v will
eventuslly result in a fission. Equation (3.14) is the state-

ment that this probability is the sum of two parts: the pro-
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bability of causing fission immediately on leaving v; and the pro-
bability of first being scattered to some lower veloclty v/,
times the probability that a neutron at v' will eventually cause
fission, summed over all v’. Under this interpretation both (3.1k)
and (3.15), which requires the neutron distribution to reproduce
itself, could have been written immediately, but the explicit form
of a(v,v') would not have been apparent.

For numerical solution, (3.1%) and (3.15) can be replaced by

=N (3.16)

and

N
» Z X =1

4= (3'17)
The solution of (3.16) is
n = 13N
Prym = ﬁ'N—' + aNN-I Py (3.18)

Formulating thé problem in this way has some advantage over the
continuity equation, since the fission spectrum enters only after
the pi's are determined. This permits investigation of the effect
on criticality of various assumptions for the fission spectrum
without repeating the major part of the calculations.

The adjoint equation is closely related to the method of
successive collisions of De Marcus and Nelson (ref. 2) which they
have used to study the transmission of particles through matter.
Their method consists of describing the neutron distribution by

a state vector W'whose component wi is the number of neutrons in




the i th cell in phase space, each cell corresponding to a
particuler specification of position, velocity and direction,
of which there are a finite number. 1In addition to these ‘'free
states', 'trap states' are included, corresponding to processes
which remove neutrons from the free states, and having the pro-
perty that a neutron cannot leave them. A matrix operator A is
introduced whose element Aij is the probability that a neutron
which has left state j will go to state i (which may be a trap
state). After k transitioms, tﬁé neutron distribution is

w(‘.) = A‘/L‘P

The ultimate distribution is given by

y*t = ATy (3.19)

where
A* o Mn A®
+ =02

If this limit exists, the equation
A*A = A | (3-20)

holds. Since A is known, A¥ can be determined from (3.20), and
then used in (3.19) to find the ultimate distribution of neutrons
among the trap states.

Although this method was set up for a non-reproducing medium,
it can be used to find the critical size of a reactor by taking as
the trap states capture leading to fission, using the fission spect-
rum for the initial distribution, and considering only one neutron
generation. A generation is taken as the interval between birth as

a fission neutron and death by absorption or leakage. Under the
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conditions we have assumed, the applic;tion of this method is greatly
simplified, since the space distribution is known in advance. This
reduces the number of unknowns and makes it possible to solve the
resulting simultaneous equations recursively.

We take N free states, each state corresponding to a partiqular
velocity range and numbered from 1 to N in order of decreasing
velocity. In addition, we take the N+l st state as a frap state,

to which neutrons causing fission are sent. Making use of its

definition, the matrix A is then of the form

(o} (o} o ' o o
@z © o "' 0

A= ng as-, 6 - o o (3‘21)
aN aNz v

i SO

The sub-matrix consisting of the aij's is triangular since neutrons
are only scattered downward in energy. The last column has the form
shown, since neutrons in the trap state cannot leave it, and the form
of the last row follows from the previous definition of the fi’s.
Tt should be noted that the sums of the elements in each colum are
generally less than one. If additional trap states were included,
corresponding to other ways by which neutrons leave the reactor, it
would be possible to account for all the neutrons involved. For
our purpose, however, only the disposition of those neutrons causing
fission is of interest.

Assume a finite probability of loss in each transition from a

free state, and consider the probabllity of passing from an initial

free state j to some final state after an infinite number of transi-




tions- This is clearly zero if the final state is a free state,
and P; (ef. the definition on p.23) if the final state is the

fission trap state. The iterated matrix is therefore

c - '00
A¥ = : (3.22)

o - 00

.P' > ..PN|

Substituting (3.21) and (3.22) in (3.20) and multiplying out

leads to
L+
Bt Z %0
;:N

©(3.23)

If we *take as the initial distribution
X,
X XN
0
the ultimate disposition of the neutrons of a particular genera-

tion will be given by the N+1 st component of the columm vector
A*Y which is

N
N )

Z *iX;

J:l
In order for this generation to reproduce itself, it is necessary
that

N
¢ . s |

(3.24)
Comparison of (3.23) and (3.24) with (3.16) and (3.17) shows that

formulating the problem in terms of the finite difference approxi-



mation to the adjoint equation (3.1h4) leads to the same set of

equations as the method of Nelson and De Marcus.




IV. MODERATION BY HYDROGEN

In this section the general treatment of Section II will be
applied to a reactor containing hydrogen and an element which scatters

1 . . '
isotropically and without energy loss . It is convenient to use the

neutron energy as an independent variable instead of the velocity,
since the distribution in energy of neutrons scattered by hydrogen
is uniform and depends only on the initial energyz.

If n(E)dE is re-defined as the rate at which neutrons leave
the energy interval dE by any means, and similar definitions are

made for the other quantities, equations (2.17) and (2.18) become

e KO m(en + f i°e'u<°’e') (€”)
M(E) = J d ( m (ll--l)
€ 3
€, €
£33 '
_( ae €) + |de’ e mee)
ey =XE iae K (e') mE) L K*e) m (h.2)

where E, is the energy corresponding to v Since Po = 2/3 for

hydrogen3 » the kernels are

1 similar results have been obtained by J. Ashkin at Los Alamos
under these assumptions, and with a more general scattering law
for hydrogen. I am indebted to T. A. Welton for bringing this
to my attention.

2 H. Soodak and E. C. Cémpbe]_l, Elementary Pile Theory, AECD-2201,
Oak Ridge, Technical Information Branch, Atomic Energy Commission,
May 19%9, p. 5.

3 14, p. 6
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Ny « g =0 Tsw o
K(E) 2w =T
(P« a e Ty
= ¢ F (x.3)
K®Ey = 2B gsu 1
o g E

K 4) (e ) - ﬁ _&

gl
mf—

where Pgg is the scattering cross-section of the hydrogen present,
since only collisions with hydrogen result in loss of energy.
Differentiating (4.1) and (k.2) with respect to E yields the

following simultaneous differential equations:
b _ ey m(g) - k™) m(E)
A€
(b.4)

am _’.L_’E + KPP m E) - K‘”(E)mte)
de AE

provided X(E) is differentiable, with the boundary conditions

m (E,) =0
(4.5)
m (&) = X (e,)

obtained from (4.1) and (4.2) by letting E approach Ege
Instead of using this general source term, however, we will

solve (4.1) and (4.2) for the case

Xty = §(lE-E&,) (4.6)

where § CE-EO) is the Dirac delta function, corresponding to mono-

energetic fission neutrons.
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Let
m(e) = m(e) + S(e-€p) (5.7)

where Ti(E) is a bounded function.

(4.6) in (%.1) and (4.2),

Substivuting this together with

3
E, o
m (&) = Kae' KW (e m €Y + ‘(AE' K®e) R €N + K (er)
€ 14

€, ,Ec
¢ ‘

+ kW (gy)
Letting E approach Eo, the boundary conditions on m and n are
m(E,) = K (E,)
] I,
ey = K9 ) (-9

In order to obtain an explicit solution we assume constant

cross-section, so that using (4.3) the kernels can be written

¢ C" .
K“)(E) = —E_ , V= 1,2,3,4 (%.10)
Differentiating (4.8) leads to
i-'!"é- . -.‘:_!,m(E) - %; A (E)
(%.11)
n S P (3 C4 M (§)
oE E E

We assume solutions of the form

(2)"
M (E) = & \g,

£ P
meEy = & (%) (k.12)




where the constants a, b and p are to be determined.

Substituting
in (4.11) leads to the equation
(p+Ci) M + Cam = o
~Cy M + (ptG)A = ©
3 (4.13)
The condition that these hold for all energies is
P+ C, Ca
=0
which determines the two constants
~ _[Ci*Ca) 4 C, +C4q\2
Pl’z ( 2""—") _f("‘"'z"—) +(C;C3"C,C4) (4.15)
The general solution of (4.11) is
P e
- e\’ EY:?
m ® = a, (E-) + Q. Eo)
R\l (_E_ )Pl 4,16
/R(E) = A’. (.Ea) + 41’ =) ( )
Using the boundary conditions (4.9) we get
Ca
a, + G, = -E"o
k.1
4_‘ + ,6‘ = 3:5_ ( 7)
€,
Substituting (4.16) in (4.11) and using (4.9),
% Q.+ % aQ, = EE'— 9.2 - E;\. C_A_
° ° o Eo Eo Eo (4.18)
P, 41 +-.gk 4 = Eé, Ca - C4 C,
— @ S —
Eo Eo Eo Eo Es Eo
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Solving (4.17) and (4.18) for a ,a,, b, and by, the solution to

(4.1) and (4.2) is

mE) = - C,Cq +-C-1C4"\>C1‘pz_ (_E.)P‘ +C,C1+th4 +Cp 8 (EP).
(P|"P\.) Eo & (Pl "P))Eo ED)
—CaCq = cyP A
MIEY = Ci€a —Ca™4 ~Caly EE‘,)‘+ -C3C, +CqCa + 4P, _E_)"z
(P‘ - P-‘_) EO (P| - pt) EO Eq

Substituting these in (2.30) and (2.31) ylelds expressions for

the flux and current.
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